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A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR
spectra. It is the salient new feature of MHS that two interferograms are acquired with different direc-
tionality of time evolution, that is, one is sampled forward from time t = 0 to the maximal evolution time
tmax, while the second is sampled backward from t = 0 to �tmax. The sampling can be accomplished in a
(semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly
combined to yield a complex time domain signal. The manifold of MHS schemes considered here is
defined by arbitrary settings of sampling phases (‘primary phase shifts’) and amplitudes of the two inter-
ferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonomet-
ric functions yield the unique linear combination required to form the complex signal. In the framework
of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal
components, ‘secondary phase shifts’ represent time domain phase errors which are to be eliminated.
In contrast, such secondary phase shifts may be introduced by experimental design in order to encode
additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is fur-
ther considered that secondary phase shifts may depend on primary phase shifts and/or sampling direc-
tionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for
widely used hypercomplex (‘States’) sampling (HS). With generalized theory it is shown, first, that pre-
viously introduced ‘canonical’ schemes, characterized by primary phases being multiples of p/4, afford
maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second,
how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase
shifts are known. Third, it is demonstrated that theory enables one to accurately measure secondary
phase shifts and amplitude imbalances. Application to constant time 2D [13C, 1H]-HSQC spectra recorded
for a protein sample with canonical MHS/HS schemes showed that accurate CAM data acquisition can be
readily implemented on modern spectrometers for experiments based on through-bond polarization
transfer. Fourth, when moderate variations of secondary phase shifts with primary phase shift and/or
sampling directionality are encountered, generalized theory allowed comparison of the robustness of dif-
ferent MHS/HS schemes for CAM data acquisition, and thus to identify the scheme best suited to suppress
dispersive peak components and quadrature image peaks. Moreover, it is shown that for spectra acquired
with several indirect evolution periods, the best suited scheme can be identified independently for each
of the periods.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The sampling of the time evolution of the spin density matrix is
pivotal for nuclear magnetic resonance (NMR) spectroscopy [1],
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(N > 1) correlate N chemical shifts, of which N � 1 are measured in
indirect dimensions [3]. In ‘Fourier Transform (FT) NMR’, the indi-
rect dimensions are sampled in the time domain before suitable
transformation (e.g., a FT) generates the frequency domain presen-
tation of the spectrum which is then analyzed. The specific proto-
col employed for sampling the time domain of an indirect
dimension is critical to achieve high spectral resolution [1] and ad-
vances of sampling protocols thus meet with a wide demand. It is
most desirable to sample for ‘pure absorption mode’: for time do-
main signals decaying mono-exponentially this yields Lorentzian
line shapes in the frequency domain, and peaks located at fre-
quency X0 decay proportional to 1/(X0 �X)2. Pure absorption
mode data acquisition aims at avoiding dispersive peaks (or disper-
sive peak components superimposed on the desired absorptive sig-
nals) because those decay only slowly, i.e., proportional to 1/
(X0 �X).

Pure absorption mode time domain data acquisition can be
accomplished by using two distinctly different approaches, that
is, by ‘hypercomplex sampling’ (HS) [1,4], which can be also be de-
scribed by the use of quarternions [5], or by ‘time proportional
phase incrementation’ (TPPI) [6–10]. HS relies on separately sam-
pling both the cosine and the sine modulation of the amplitude of
the directly detected NMR signal with the evolution of chemical
shifts in an indirect dimension. The resulting two interferograms
are combined to form a complex time domain signal, and subse-
quent complex FT, along with proper adjustment of phases (‘zero’-
and ‘first order-’phase corrections), yields the desired absorptive
signals in the frequency domain. In contrast, when using TPPI, only
one interferogram is acquired, where (a) the increment of the delay
representing the indirect evolution period is reduced to half of
what is used for HS (i.e., the spectral width is doubled), and (b)
the phase of the radio-frequency (r.f.) pulse generating transverse
magnetization is incremented along with the incrementation of
the indirect evolution period, so that the apparent carrier position
is shifted to the edge of the spectral range. Cosine (or ‘real’) FT,
along with proper adjustment of phases and discarding quadrature
image peaks, yields the desired absorptive signals in the frequency
domain. The TPPI approach requires that r.f. pulse phases can be
set very accurately, since errors in r.f. pulse phases translate into
systematic errors of the measured chemical shifts. Moreover, HS
and TPPI based pure absorption mode data acquisition differ in
how peaks located outside of the chosen spectral range are ‘folded
back’ into the spectrum [3]. Nowadays, the majority of multi-
dimensional NMR experiments are acquired using HS.

This is also due to the fact that after the seminal work of States
et al. [4] on HS was published, a variety of data acquisition schemes
were introduced in which first two interferograms are acquired that
encode chemical shifts in the directly detected signals by phase
modulation in the two opposite senses of rotations (note that such
approaches cannot be implemented when using TPPI since only a
single interferogram is acquired). These interferograms are then lin-
early combined to construct the desired cosine and sine amplitude
modulations. Among those schemes are (i) the acquisition of
‘echo’/‘anti-echo’ interferograms by use of pulsed B-field gradients
[11,12], (ii) sensitivity enhancement schemes for NMR experiments
correlating chemical shifts of two nuclei which exhibit a compara-
bly large one-bond scalar coupling used for polarization transfer
[13], and (iii) approaches combining (i) and (ii) [14,15].

Very recently, mirrored hypercomplex (MHS) time domain
sampling [16] was introduced for clean absorption mode (CAM)
NMR data acquisition of (semi) constant time [3] as well as non
constant-time [1,3] experiments [16]. This novel approach aims
at removing residual dispersive peak components that cannot be
eliminated by zero- or first-order phase correction, or occur in G-
matrix FT (GFT) [17] based projection NMR [18–27], where phase
errors of jointly sampled chemical shifts are entangled and phase
corrections cannot be applied for individual evolution periods.
The elimination of such residual dispersive peak components is
important because they (i) increase spectral overlap, and (ii) shift
the maxima of peaks, thereby reducing the accuracy of chemical
shift measurements [16]. As a distinct new feature, the two inter-
ferograms for construction of the complex time domain signal are
acquired with different directionality of the time evolution, that is,
one interferogram is sampled forward from time t = 0 to the max-
imal evolution time tmax, while the second one is sampled back-
ward from t = 0 to �tmax. Note that Nagayama [28] published an
approach for processing of 2D spectra which relies on (i) linearly
combining the interferograms obtained by HS [4] to generate two
interferograms encoding chemical shifts in the directly detected
signals by phase modulation in the two opposite senses of rotations,
(ii) inverting the order of the data points of the one of the phase
modulated spectra so that they are sorted from t = tmax to 0 (‘time
reversal’) and forming the complex conjugate (i.e., ‘frequency
inversion’), and (iii) adding the two thus obtained phase modu-
lated spectra with the aim to create 2D spectra devoid of mixed
phases. However, it can be shown that this approach is not gener-
ally applicable. In particular, the approach can hardly be employed
for constant time evolution periods, or when tmax is much shorter
than the transverse relaxation time T2 of the evolving spin (see
Supplementary Material). Moreover, in contrast to this approach
for data processing, MHS represents an acquisition technique rely-
ing on interferograms which are sampled from t = 0 to �tmax (see
above). As a result, CAM data acquisition is based on distinct con-
siderations for its implementation, as is discussed in the following.

For efficient CAM data acquisition, it is crucial to design and set
up a given experiment such that first and second order phase cor-
rections are zero. This is because CAM data acquisition eliminates
all phase shifts independent of their origin and at the expense of
signal intensity [16]: zero order phase shifts (being the same for
all signals) and first order phase shifts (being linearly correlated
with chemical shifts) are eliminated as well as residual phase er-
rors which are not linearly correlated with chemical shifts. To
exemplify this feature of CAM data acquisition, we previously pub-
lished [16] cross sections taken from non constant time 2D [13C,
1H]-HSQC [3] spectra recorded for a protein sample employing
HS/MHS schemes with delayed acquisition, resulting in 108� first
order phase corrections over the 13C spectral range (see Supporting
Information of [16], Section V, p. 43). Taken together, elimination
of phase shifts in CAM shall preferably [16] be limited to phase er-
rors which cannot be eliminated (i) by experimental design aiming
at pure phases and (ii) by avoiding delayed acquisition [3]. Impor-
tantly, it has been shown [16] that (i) for phase errors up to about
±15� the resulting loss of signal intensity is negligible, i.e., less than
about 4%, and that (ii) the ‘sampling demand’ is not increased
whenever quadrature image peaks are within the noise floor or fall
in otherwise empty spectral regions, or when dual MHS is com-
bined with (at least) a 2-step phase cycle required anyways for
artifact suppression. It has also been shown that CAM data acqui-
sition can be implemented for both (semi) constant time and non
constant time evolution periods [16]. For (semi) constant time evo-
lution periods, the 180� r.f. pulse refocusing chemical shift evolu-
tion is simply shifted in opposite directions to enable opposite
sampling directionality. Non constant time sampling, which like-
wise requires that a 180� r.f. pulse is applied [16], can be rational-
ized as the limit of semi constant time sampling in which the delay
between the 180� pulse and the 90� r.f. pulses at the beginning or
the end of the evolution period is set to zero (for a product operator
description see Section III of the Supporting Information of [16]).

A given HS/MHS scheme can be characterized by defining the
two interferograms which yield the complex time domain signal re-
quired for pure absorption mode acquisition. Previously [16] we de-
fined, for a given chemical shift a, an interferogram by the equation



Table 1
Survey of canonical NMR time domain sampling schemes.a

Sampling scheme w d p q Interferogramsb

i. Mirrored hypercomplex sampling (MHS)
p4,p/4 – MHS p/4 0 1 � cp

4
ðtÞ � cþ1

� 1 cp
4
ð�tÞ � c�1

3p4,3p/4 � MHS 3p/4 0 3 � c3p
4
ðtÞ � cþ3

� 3 c3p
4
ð�tÞ � c�3

0,p/2 – MHS 0 p2 0 � c0(t) � c+0

� 2 cp
2
ð�tÞ � c�2

p/2,3p/2 – MHS p/2 3p2 2 � cp
2
ðtÞ � cþ2

� 0 c0(�t) � c�0

ii. Hypercomplex sampling (HS)
Forward HS 0 p2 0 � c0(t) � c+0(t)

� 2 cp
2
ðtÞ � cþ2

Backward HS 0 p2 0 � c0(�t) � c�0(�t)
� 2 cp

2
ð�tÞ � c�2ð�tÞ

a p and q define the primary phase shifts according to w = pp/4 and w + d = qp/4.
b For comparison, interferograms are represented using both the nomenclature

previously adopted for CAM data acquisition [16] (on the right) and the nomen-
clature required for the generalized formalism presented in this paper (on the left).
Accordingly, the two interferograms required to construct the complex time
domain signal are represented by ðcwð�tÞ; cwþdð�tÞÞ in the nomenclature of this
paper and by ðc�p; c�qÞ in the shorter nomenclature previously introduced for
canonical schemes [16].
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c�n :¼ cosð�at þ np=4þUÞ, where ‘±’ indicates forward (‘+’) or
backward (‘�’) time domain sampling, n = 0, 1, 2 or 3 defines as
np/4 the ‘primary phase shift’, i.e. the difference between the phases
of the two r.f. pulses used to first generate transverse magnetization
at the start of the chemical shift evolution period and then to trans-
fer magnetization at the end of the chemical shift evolution period.
In this paper, such sampling schemes with primary phases being
multiples of p/4 will be referred to as the ‘canonical’ schemes. U de-
notes a ‘secondary phase shift’ which represents, in the framework
of CAM data acquisition, a phase error. Alternatively, novel experi-
ments are conceivable in which the secondary phase shift encodes
an NMR parameter. In this case, the employment of MHS does not
aim at eliminating the phase shift but at enabling its accurate mea-
surement by integrating purely absorptive peaks and quadrature
image peaks to obtain the value of the parameter.

The two interferograms chosen for a given HS/MHS scheme
form an interferogram vector C, which in turn is multiplied by a
matrix D to generate the linear combinations of the interferograms
required to construct the complex time domain signal [16]. MHS
with C = (c+1,c�1) or C = (c+0,c�2) offers the unique opportunity of
transferring a dispersive signal component, which would arise
from a secondary phase shift when employing HS [‘States’ sam-
pling [4]; C = (c+0,c+2)], into a quadrature image peak being, respec-
tively, purely absorptive or dispersive [16]. Furthermore, we
showed that use of dual MHS (DMHS) with n = 1 and n = 3 and re-
cently introduced dual HS (DHS) [16] or dual TPPI [10] with for-
ward and backward sampling, along with subsequent addition of
the resulting spectra, enables one to eliminate signals arising from
the presence of the phase errors [16]. This, however, relies on the
time domain signal amplitude and the phase errors being indepen-
dent of primary phase shifts and time domain sampling direction.
Note that the name ‘MHS’ chosen here differs from the previously
introduced name ‘phase-shifted mirrored sampling’ (PMS). This is
because in the framework of a generalized theory arbitrary shifting
of primary phases is implicit, and the name ‘MHS’ emphasizes that
such sampling schemes belong to the class of hypercomplex as op-
posed to TPPI sampling schemes.

We present here a generalized theory of MHS, DMHS and, for
comparison, of HS and DHS. The manifold of considered schemes
is defined by arbitrary settings of primary phase shifts and ampli-
tudes of the two interferograms. Moreover, the theories encompass
cases where secondary phase shifts are dependent on primary
phase shifts and/or time domain sampling directionality.
2. Theory

For deriving the generalized MHS and HS theory [16], the fol-
lowing definitions are chosen to characterize the two interfero-
grams (Table 1) used to construct the desired complex time
domain signal. A given sampling scheme is defined by two primary
phase shifts w 2 ½0;2p½ and wþ d 2 ½0;2p½ (the open intervals ex-
clude 2p which is equal to a 0� shift) and the directionality of time
domain sampling. Hence, each of the two interferograms can be
defined by

cwþdð�tÞ :¼ I�wþd cosðwþ d� at þU�wþdÞ ð1Þ

where d = 0 for the first interferogram and d 2 ½0;2p½ represents the
difference between the primary phase shift of the second and first
interferogram, and ‘+’ or ‘�’ in ‘±’ applies for forward and backward
sampling, respectively. U and I represent the secondary phase shift
and relative time domain signal amplitude, which are in the follow-
ing assumed to be different for different detected signals and may
depend on the sampling direction (indicated by superscript ‘±’)
and/or the primary phase shift (indicated by subscript ‘w + d’). The
fact that the primary phases can be set arbitrarily implies that a
D-matrix [16] for linear combination of the interferograms needs
to be derived which is a function of the two primary phases.

As for the canonical sampling schemes introduced previously
[16], the manifold of generalized schemes represented by Eq. (1)
is classified according to the directionality of time domain sam-
pling: for MHS one interferogram is sampled forward and the other
backward, and for HS both interferograms are sampled in the same
direction (both forward or both backward). Notably, the general-
ized theory of HS enables one to connect the concepts presented
here to the widely used canonical HS introduced by States et al.
[4]. For the sake of conciseness, generalized HS theory is provided
as Supplementary Material.

2.1. Mirrored hypercomplex sampling (MHS)

A generalized theoretical description of MHS shall be estab-
lished by pursuing the following steps: (1) definition of the inter-
ferogram C-vector; (2) derivation of the corresponding D-matrix
for linearly combining the interferograms; (3) proof that the inten-
sities of the desired absorptive signals scale with the determinant
of D and that canonical MHS schemes, which are characterized
by primary shifts being multiples of p/4, provide maximal signal
intensity in the absence of secondary phase shifts and amplitude
imbalances; (4) calculation of the complex time domain signal ob-
tained when employing generalized MHS and D-matrix; (5) deriva-
tion of a condition for maximal intensity of desired absorptive
signals considering the presence of secondary phase shifts, but in
the absence of amplitude imbalances; (6) derivation of the time do-
main signal obtained when employing generalized canonical MHS;
and (7) surveying implications of MHS and D-matrix transforma-
tion for the subsequent transformation into frequency domain
data. For illustration, simulated spectra obtained with generalized
MHS are shown in Fig. 2 and referred to in the following.

1. Definition of C-vector.

It is the defining feature of MHS that the two interferograms
used to construct the complex time domain signal are sampled
in different directions, that is, the first one along +t and the second
one along �t, thereby yielding with definitions introduced for Eq.
(1):
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C ¼
Iþw cwðtÞ

I�wþdcwþdð�tÞ

" #
¼

Iþw cosðwþ at þUþw Þ
I�wþd cosðwþ d� at þU�wþdÞ

" #
ð2Þ

2. Derivation of D-matrix.

In order to form linear combinations of the two C-vector inter-
ferograms [Eq. (1)] yielding the desired pure cosine and sine mod-
ulations to construct the complex time domain signal, a
generalized D-matrix is derived, which is a function of the primary
phase shifts only. Hence, amplitudes and secondary phase shifts in
C are set to 1 and 0, respectively. According to the addition theo-
rems of trigonometric function, Eq. (2) yields

C ¼
cwðtÞ

cwþdð�tÞ

� �
¼

cosðwþ atÞ
cosðwþ d� atÞ

� �

¼
cos wcosat � sin w sin at

cosðwþ dÞ cos at þ sinðwþ dÞ sin at

� � ð3Þ

so that the two interferograms can be linearly combined according
to:

sinðwþdÞcwðtÞþsinwcwþdð�tÞ¼sinð2wþdÞcosat

�cosðwþdÞcwðtÞþcoswcwþdð�tÞ¼sinð2wþdÞsinat

()
sinðwþdÞ sinw

�cosðwþdÞ cosw

� �
cwðtÞ

cwþdð�tÞ

� �
¼D

cwðtÞ
cwþdð�tÞ

� �
¼sinð2wþdÞ

cosat

sinat

� �
ð4Þ

where the D-matrix thus emerges as

D ¼
sinðwþ dÞ sin w

� cosðwþ dÞ cos w

� �
:

A pictorial derivation of the D-matrix is presented in Fig. 1a–c,
where the forward and backward sampled interferograms cwðtÞ
and cwþdð�tÞ are represented, respectively, by unit vectors ê�w and
êwþd with polar angles �w and w + d in the plane spanned by basis
vectors representing cosat and sinat. For comparison, the analogous
pictorial derivation for HS is presented in Fig. 1d–f.

3. Intensities of complex time domain signal scales with the
determinant of D.

The area of the parallelogram formed by ê�w and êwþd is given by
the determinant of the D-matrix:

sinðwþ dÞ sin w

� cosðwþ dÞ cos w

����
���� ¼ sinðwþ dÞ cos wþ cosðwþ dÞ sin w

¼ sinð2wþ dÞ
ð5Þ

which is, according to Eq. (4), proportional to the time domain sig-
nal amplitude. Hence, signal intensity is maximal for orthogonal
vectors ê�w and êw þ d. This is given if

2wþ d ¼ ð2nþ 1Þp
2

n ¼ 0;1 ð6Þ
This condition constrains the two primary phase shifts to the values
chosen for previously published canonical MHS [16] [Table 1(i)],
and proves that these schemes provide maximal signal intensity
in the absence of secondary phase shifts and amplitude imbalances.
Any deviation results in a reduction of the intensity of desired
absorptive signals. In the limiting case of 2w + d = 0, one has that
the two vectors ê�w and êwþd are collinear (i.e., detD = 0) and such
sampling does not afford phase sensitive signal detection [16,29].

4. Complex time domain signal resulting from MHS and D-
matrix transformation.

With the D-matrix of Eq. (4), the complex time domain signal Sw;dðtÞ
is then proportional to (see derivation of Eq. (S1) of Section I in the
Supplementary Material for intermediate steps of the calculation):
Sw;dðtÞ / Q D C ¼ 1 i½ �
sin wþ dð Þ sin w

� cosðwþ dÞ cos w

� �
Iþw cwðtÞ

I�wþdcwþdð�tÞ

" #

¼ 1 i½ �
sinðwþ dÞ sin w

� cosðwþ dÞ cos w

� �

�
Iþw cos w cos at þUþw

� �
� sin w sin at þUþw

� �� �
I�wþd cosðwþ dÞ cos at �U�wþd

� �
þ sinðwþ dÞ sin at �U�wþd

� �� �
2
64

3
75

¼ 1
2

Iþw sin 2wþ dþUþw
� �

þ I�wþd sin 2wþ dþU�wþd

� �� �
eiat

� 1
2

Iþw cos 2wþ dþUþw
� �

� I�wþd cos 2wþ dþU�wþd

� �� �
eip2 eiat

þ 1
2

Iþw sin d�Uþw
� �

� I�wþd sin dþU�wþd

� �� �
e�iat

� 1
2

Iþw cos d�Uþw
� �

� I�wþd cos dþU�wþd

� �� �
eip2 e�iat

¼ kAþ
MHSeiat þ kDþ

MHSeip2 eiat þ kA�
MHSe�iat þ kD�

MHSeip2 e�iat

ð7Þ

where Q = [1 i] and the k-coefficients represent [16], respectively,
the relative intensities of absorptive (A+) and dispersive (D+) signal
components located at +a in the frequency domain, as well as the
relative intensities of absorptive (A�) and dispersive (D�) quadra-
ture signal components located at �a in the frequency domain.

5. Condition for maximal signal intensity in the absence of
amplitude imbalances.

A condition for maximal signal intensity shall be derived when MHS
is employed for CAM data acquisition in the presence of secondary
phase shifts being phase errors, while assuming that amplitude
imbalances are absent. This assumption is made because quadra-
ture image peaks are quite generally not observed in indirect
dimensions when conventional HS [1,4] is employed on modern
NMR spectrometers (this also implies that nuclear spin relaxation
does not affect the two interferograms differently). Hence, ampli-
tude imbalances can be neglected for CAM data acquisition and
we focus on the phase errors. With identical amplitudes, one can
readily derive a condition for 2w + d yielding maximal intensity of
A+ (i.e., jkAþ

MHSj being maximal):

dkAþ
MHS

dð2wþ dÞ ¼
d

dð2wþ dÞ ðsinð2wþ dþUþw Þ þ sinð2wþ dþU�wþdÞÞ ¼ 0

) 2wþ d ¼ ð2nþ 1Þp
2
�

Uþw þU�wþd

2
n ¼ 0;1

ð8Þ

For a signal with known phase errors Uþw and U�wþd, Eq. (8) allows
one to adjust a primary phase shift to maximize intensity: for a gi-
ven value of d, w can be adjusted or vice versa. When considering
multiple signals, adjustment of a primary phase shift depends on
the distribution of phase errors and on their relative importance,
i.e., their weighting for the calculation of an averaged adjusted pri-
mary phase shift to maximize overall signal intensity. Importantly,
the distribution of phase errors has to be measured only once for
a given NMR experiment and instrumental set-up. This is because
the adjusted primary phase can be used for other samples, as long
as the r.f. pulse scheme of the NMR experiment and the set-up
are not modified. If the phase errors of different signals have oppo-
site signs, any adjustment leading to a signal gain for a one signal
leads to a reduction of intensity for a signal associated with phase
error of opposite sign. Eq. (8) thus reveals that without knowledge
of the phase errors, the ‘canonical’ schemes defined by Eq. (6) are
the best first choice.

6. Calculation of the time domain signal obtained with gen-
eralized canonical MHS.

With canonical primary phase shifts of 2w + d = p/2 [Table 1(i)], Eq.
(7) simplifies to



Fig. 1. Pictorial derivation of D-matrices for MHS (a–c) and forward HS (d–f). (a) The two interferograms leading to MHS quadrature detection are represented by unit vectors
ê�w and êðwþdÞ in a 2D plane spanned by the basis vectors cosat and sinat (with a being the chemical shift). The polar angles �w and (w + d) define the primary phase shifts and
they are positive when measured anticlockwise. The projections of the unit vectors on the cosat axis (cosine modulations) are shown in red while those on the sinat axis (sine
modulations) are shown in green. Forward sampling (blue unit vectors) leads to a negative polar angle resulting in, respectively, positive cosat-axis and negative sinat-axis
projections, while backward sampling (magenta unit vectors) results in positive projections on both the cosat- and the sinat-axis (Eq. (7). (b) Each of the two unit vectors is
multiplied by the magnitude of the sinat-axis projection of the other one, so that the sinat-axis projections of the two resulting vectors cancel each other. This corresponds to
the multiplication of the first row of the D-matrix with the interferogram vector (Eq. (4)). The cosat-axis projections of the resulting vectors add up to give rise to a pure
cosine modulation scaled by sin(2w + d), where 2w + d is the angle between the two unit vectors in (a). Inspection of the graph shows that the pure cosine modulated signal
becomes maximal when 2w + d = p/2 (Eq. (6)). (c) Each of the two unit vectors is multiplied by the magnitude of the cosat-axis projection of the other one and the resulting
vector in the direction of ê�w is then multiplied by �1, so that the cosat-axis projections of the two resulting vectors cancel each other. This corresponds to the multiplication
of the second row of the D-matrix with the interferogram vector (Eq. (4)). The sinat-axis projections of the resulting vectors add up to give rise to a pure sine modulation,
likewise scaled by sin(2w + d). Inspection of the graph shows that the sine modulated signal becomes maximal when 2w + d = p/2 (Eq. (6)). (d) The two interferograms leading
to forward HS quadrature detection are both forward sampled and are represented by unit vectors ê�w and ê�ðwþdÞ with negative polar angles �w and �(w + d), respectively. (e)
Each of the two unit vectors is multiplied by the magnitude of the sinat-axis projection of the other one and the resulting vector in the direction of ê�ðwþdÞ is then multiplied by
�1, so that the sinat-axis projections of the two resulting vectors cancel each other. This corresponds to the multiplication of the first row of the D-matrix with the
interferogram vector [Eq. (S4)]. The cosat-axis projections of the resulting vectors partially cancel each other to give rise to a pure cosine modulation scaled by sind, where d is
the angle between the two unit vectors in (d). Inspection of the graph shows that the pure cosine modulated signal becomes maximal when d = p/2 [Eq.(S60)]. (f) Each of the
two unit vectors is multiplied by the magnitude of the cosat-axis projection of the other one and the resulting vector in the direction of ê�ðwþdÞ is then multiplied by �1, so that
the cosat-axis projections of the two resulting vectors cancel each other. This corresponds to the multiplication of the second row of the D-matrix with the interferogram
vector [Eq. (S4)]. The sinat-axis projections of the resulting vectors partially cancel each other to give rise to a pure sine modulation, likewise scaled by sind. Inspection of the
graph shows that the sine modulated signal becomes maximal when d = p/2 [Eq. (S6)]. Notably, a 2D vector diagram related to HS was presented in [35] to exemplify
‘CYCLOPS’ phase cycling [1].
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Sw;dðtÞ ¼
1
2
ðIþw cosUþw þ I�wþd cosU�wþdÞeiat

þ1
2

Iþw sinUþw � I�wþd sinU�wþd

� �
eip2eiat þ1

2
ðIþw sinðd�Uþw Þ

� I�wþd sinðdþU�wþdÞÞe�iat �1
2
ðIþw cosðd�Uþw Þ

� I�wþd cosðdþU�wþdÞÞeip2e�iat ð9Þ
Inspection of Eq. (9) reveals that canonical sampling in the presence
of secondary phase shifts and amplitude imbalances followed by
generalized D-matrix transformation [Eq. (4)] yields A+ and D+ sig-
nal components which are independent of w and d, while A� and
D� depend on d. Hence, d can be adjusted so that quadrature signals
are either largely absorptive or dispersive. As an illustration, Fig. 2
shows simulated MHS data for w = p/4 and d = 0. For Fig. 2a, the
amplitudes and secondary phase shifts are set to
Iþw ¼ 0:8; I�w ¼ 0:5;Uþw ¼ �100;U�w ¼ 90, and the resulting mixed
phases of the two peaks at ±a are apparent.

7. Transformation into frequency domain.

After D-matrix transformation, the two MHS interferograms result
in complex time domain signals [Eq. (9)] as obtained directly with
widely used HS (i.e., without linear combination of interferograms).
As a result, fundamental features of FT NMR spectroscopy are not
affected, e.g. the implications of the causality principle [1] yielding
the Hilbert transform relationship between real and imaginary part
of the complex time domain signal [1]. Hence, transformation [30]
into frequency domain and data processing in general [30] is
accomplished in the same manner as for spectra acquired with
HS, and generalized theory for MHS is presented here for the time
domain. Moreover, D-matrix transformation yields linear combina-
tions of time domain interferograms. In contrast to transformations
into frequency domain, D-matrix transformation is thus not af-
fected by the time domain data being discrete or continuous. Hence,
effects arising from the discreteness of time domain data upon
transformation into the frequency domain are the same as those
which are well known for spectra acquired with HS [1,3]. It is, how-
ever, worth noting that FT of a complex signal obtained with dis-
crete HS and delayed acquisition results in baseline distortion
[31], unless the first order phase correction is 0� or 180�. Since
CAM data acquisition eliminates all secondary phase shifts includ-
ing those resulting from delayed acquisition (which should be
avoided to maximize signal intensity; see introduction), the time
domain spectra after D-matrix transformation correspond to con-
ventional spectra acquired with 0� first order phase correction. As
a result, spectra obtained with CAM data acquisition do not exhibit
such baseline distortions.

2.2. Dual mirrored hypercomplex sampling (DMHS)

When employed for CAM data acquisition, DHMS aims at elim-
inating quadrature image peaks arising from phase errors [16].
With the generalized D-matrix of Eq. (4) and when increasing w
by p/2 while d remains the same when compared with the deriva-
tion of Eq. (7), the complex time domain signal is proportional to
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� �
eip2 e�iat

ð10Þ
As an illustration, Fig. 2b shows simulated MHS data for w = 3p/4 and
d = 0. Here, the amplitudes and secondary phase shifts are set to
Iþwþd ¼ 0:9, I�wþd ¼ 0:55, Uþwþd ¼ 12�, and U�wþd ¼ �5� and the resulting
mixed phases and of the two peaks located at ±a are apparent.Sub-
traction of Swþp

2;d
ðtÞ in Eq. (10) from Sw;dðtÞ in Eq. (7) then yields the

complex time domain signal for DMHS, which is proportional to
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(Note that the second data set can also be recorded by increasing w
by p/2 and d by p. Then, Swþp

2;d
ðtÞ and Sw;dðtÞ need to be added.)

Inspection of Eq. (11) reveals that for non-identical amplitudes
and/or phase errors, the dispersive components are only partially
eliminated [Fig. 2c–e]. In the limit of Iþw ¼ I�wþd ¼ Iþwþp

2
¼ I�wþp

2þd ¼
IandUþw ¼ U�wþd ¼ Uþwþp

2
¼ U�wþp

2þd ¼ U;
Eq. (11) simplifies to

Sw;dðtÞ � Swþp
2;d
ðtÞ / 2I sinð2wþ dþUÞeiat ð12Þ

Inspection of Eq. (12) shows (i) that for arbitrary primary phases
one can obtain CAM spectra which are devoid of both dispersive
peak components and quadrature image peaks [Fig. 2(f)], and (ii)
that signal intensity is maximal when the condition of Eq. (6) is ful-
filled. Analogous theory for HS, as well as for its extension to novel
DHS [16], is presented in Section II of the Supplementary Material.

2.3. Figures of merit (FOM)

Inspection of the equations for the complex time domain signals
obtained with MHS [Eq. (7)], DMHS [Eq. (11)], HS [Eq. (S7)] and
DHS [Eq. (S10)] shows that the canonical sampling schemes (Ta-
ble 1) perform differently for CAM NMR data acquisition when sec-
ondary phase shifts being phase errors depend on sampling
directionality and/or primary phase shifts (or when imbalances
of amplitudes are encountered). Comparison is, however, impeded
by the intricate dependence of the relative intensities (i.e., k-coef-
ficients) on secondary phase shifts and amplitude imbalances.
Since the elimination of (i) dispersive signal components located
at +a in the frequency domain and (ii) quadrature signals located
at�a in the frequency domain are the two aims of CAM data acqui-
sition, we define two corresponding figures of merit (FOM), MD and
MQ, in order to benchmark the performance of the schemes. These
FOMs are defined as

MD ¼ jkAþj
jkAþj þ jkDþj

ð13Þ

and

MQ ¼ MD ¼ jkAþj þ jkDþj
jkAþj þ jkDþj þ jkA�j þ jkD�j

ð14Þ

which are equal to 1 for complete elimination of dispersive compo-
nents and quadrature signals, respectively.
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2.4. Calculation of time domain amplitudes and secondary phase shifts
from frequency domain signals for canonical MHS

Accurate measurement of time domain amplitudes and second-
ary phase shifts is required to (i) assess the performance of a given
sampling scheme for CAM data acquisition and to (ii) analyze NMR
experiments in which parameters are encoded in amplitude imbal-
ances or secondary phase shifts. Quite generally, the time domain
signal results from the superposition of a large number of individ-
ual signals, so that secondary phase shifts and amplitudes are pref-
erably calculated from phases and intensities registered for well
resolved frequency domain peaks. To ensure accurate mapping of
time domain phase shifts and amplitudes onto frequency domain
phases and amplitudes, such analysis needs to rely on a unitary
transformation into the frequency domain (e.g., FT employed with-
out prior linear prediction [3,30] of time domain data) followed by
measurement of intensities and phases of frequency domain peaks.

Here we present equations relating time and frequency domain
parameters resulting from FT of time domain data sampled with
the canonical schemes of Table 1. In the following, Ĩ+a and h+a shall
denote, respectively, intensity and phase of a frequency domain
peak located at +a, and, correspondingly, Ĩ�a and h�a denote inten-
sity and phase of the quadrature image peak at �a.

With Eq. (6), ~Iþa;~I�a; hþa and h�a are given by (see Section III.1 of
the Supplementary Material for intermediate steps of
calculations):
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1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
w þ I2

wþd � 2IwIwþd cosð2ð2wþ dÞ þUw þUwþdÞ
q

~I�a ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
w þ I2

wþd � 2IwIwþd cosðUw þUwþdÞ
q

tan hþa ¼ �
Iw cosð2wþ dþUwÞ � Iwþd cosð2wþ dþUwþdÞ
Iw sinð2wþ dþUwÞ þ Iwþd sinð2wþ dþUwþdÞ

tan h�a ¼ �
Iw cosðd�UwÞ � Iwþd cosðdþUwþdÞ
Iw sinðd�UwÞ � Iwþd sinðdþUwþdÞ

ð15Þ

so that
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tanUw¼
~Iþa sinhþa�~I�a cosðh�a�dÞ
~Iþa coshþa�~I�a sinðh�a�dÞ

for 2wþd¼p=2 ðn¼0Þ
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ð16Þ

Analogous equations for HS are presented for HS in Sections III.2
and III.3 of the Supplementary Material.

3. Results and discussion

3.1. Measurement of amplitudes and secondary phase shifts

The generalized theory of mirrored NMR time domain sampling
enables one to confirm for a given NMR experiment if assumptions
are accurate which were previously made for implementation and
employment of CAM data acquisition [16], i.e., having time domain
signal amplitudes and phase errors that are independent of time
domain sampling direction and primary phase shifts. Although vi-
sual inspection of spectra recorded with CAM data acquisition
showed that phase errors are eliminated rather efficiently (see
Figs. 2–4 in [16]), it remained an open question if accurate mea-
surement of frequency domain phases and amplitudes followed
by calculation of time domain secondary phase shifts and ampli-
tudes reveals minor, but significant deviations from the above sta-
ted assumptions.

As an example, we analyze here signals in simultaneous con-
stant time 2D [13Caliphatic/13Caromatic, 1H]-HSQC spectra that were
recorded [16] with different canonical schemes (Table 1) for the
13C, 15N-labeled 8 kDa structural genomics target protein CaR178.
When employing HS [4] without delayed acquisition, a small first
order phase correction is required due to off-resonance effects of
13C r.f. pulses. Such a correction can ensure that virtually absorp-
tive peaks are registered for the aliphatic 13C–1H moieties, while
the peaks arising from aromatic moieties, which are folded along
x1 (13C), exhibit residual dispersive components [Fig. 3a]. These
cannot be eliminated by a first-order phase correction since such
a correction would then re-introduce dispersive components for
the aliphatic peaks. MHS enables one to transfer the dispersive
peak components into quadrature image peaks [Fig. 3b] and those
can be eliminated by use of DHMS [Fig. 3c].

With Eqs. (16), (S28) and (S37), the time domain amplitudes
and secondary phase shifts of the two interferograms recorded
for a given acquisition scheme were calculated from frequency do-
main intensities and phases for three well resolved aromatic sig-
nals and their corresponding quadrature signals [Fig. 3(b),
Table 2]. The errors of the time domain parameters were calculated
from the experimental errors of the measured frequency domain
parameters using laws of error propagation (see Eqs. S98 in Sec-
tion VII.1 and S102 in Section VII.2 of the Supplementary Material).
Comparison of time domain amplitudes and secondary phase shifts
for the interferograms acquired for MHS with w = p/4, d = 0 and
w = 3p/4, d = 0 [Table 2(i)], and forward and backward sampled
HS [Table 2(ii)] shows that these parameters are, within the exper-
imental errors, indeed independent of time domain sampling
direction and primary phase shifts. This is in agreement with the
fact that dispersive components and corresponding quadrature im-
age peaks are completely eliminated when employing DMHS
[Fig. 3c].

The absence of any significant time domain amplitude imbal-
ances is expected since the setting of r.f. pulse phases and widths,
as well as signal detection are highly accurate and reproducible on
modern spectrometers. This is in agreement with the fact that
quadrature image peaks in indirect dimensions of multidimen-
sional spectra are quite generally not detected. The finding that
phase errors are also independent of sampling direction and
primary phase shifts is, a priori, a finding specific for the
experiment analyzed here, i.e., for simultaneous constant time 2D
[13Caliphatic/13Caromatic, 1H]-HSQC recorded for proteins. However,
such 2D [13C, 1H]-HSQC [3] consists of two INEPT-type [1] steps
which themselves represent modules widely used for the design
of heteronuclear NMR experiments relying on through-bond
polarization transfer [3]. Hence, this finding indicates that CAM
data acquisition [16] can be employed for such experiments, unless
distinct features of their design give rise to phase shifts being
dependent on primary phase or sampling directionality.

3.2. Comparison of canonical MHS/HS schemes for CAM data
acquisition

The generalized theory of time domain sampling presented here
enables one to compare the performance of the canonical sampling



Fig. 2. Simulated spectral data for MHS (a–f) and HS (g–l) NMR data acquisition obtained for non-identical amplitude and secondary phase shift. Forward and backward time
domain sampled interferograms are shown, respectively, in blue and red, and linear combinations of time or frequency domain data are depicted in green. For comparison, the
dashed gray lines represent time domain data of unit amplitude and U = 0�. The amplitudes and the secondary phase shifts for each interferogram are given, respectively, at
the top right and left corners of each box. Intensities and phases of each frequency domain peak are also provided. The intensities and phases of the frequency domain spectra
were calculated using Eq. (15) for MHS, Eqs. (S29) and (S30) of the Supplementary Material for forward HS and Eqs. (S38) and (S39) of the Supplementary Material for
backward HS. Amplitude and secondary phase imbalances result in peaks with mixed phases located at +a = +600 Hz (solid line) and the corresponding quadrature image
peak position at �a = �600 Hz (dashed line) for both MHS (a, b) and HS (g, h). With non-identical amplitudes and secondary phase shifts, DMHS (c) and DHS (i) eliminate
dispersive and quadrature image peak components only partially. (d, j) Frequency domain signals obtained for MHS and HS with different secondary phase shifts for the two
interferograms but identical amplitudes, showing that elimination of dispersive peak components is incomplete. (e, k) MHS and HS with different amplitudes for the two
interferograms but identical secondary phase shifts of 10�, showing that elimination of dispersive peak components is incomplete. (f, l) MHS and HS with identical amplitude
and secondary phase shifts for all interferograms resulting in complete elimination of dispersive peak components as described previously [16].
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Fig. 3. Contour plots from simultaneous constant time 2D [13Caliphatic/13Caromatic]-HSQC spectra. Plots comprising three aromatic signals (denoted as I, II and III; see also
Table 2) and their corresponding quadrature image peaks (shown within dashed green boxes) taken from spectra acquired with (a) forward HS, (b) (cþ45; c

�
45)-MHS and (c)

ðcþ45 ; c
�
45 ; c

þ
135; c

�
135Þ-DMHS. In (a), dispersive peak components are apparent, which are ‘moved’ into absorptive quadrature image peaks in (b). In (c), dispersive peak

components and quadrature image peaks are eliminated.

Fig. 4. Plots of figures of merit for elimination of dispersive peak components. MD was calculated according to Eq. (13) when phase errors (‘secondary phase shifts’) depend on
primary phase shifts but not on the sampling directionality, that is, Uþw ¼ U�w ¼ Uw and Uþwþd ¼ U�wþd ¼ Uwþd: The FOM is calculated for a range of ±10�. (a) ðcþ45 ; c

�
45Þ-MHS, (b)

ðcþ135; c
�
135Þ-MHS, (c) ðcþ45; c

�
45; c

þ
135 ; c

�
135Þ-DMHS, (d) ðcþ0 ; c�90Þ-MHS, (e) ðcþ90; c

�
0 Þ-MHS, (f) ðcþ0 ; c�90; c

þ
90; c

�
0 Þ-DMHS, (g) forward HS, (h) backward HS, and (i) DHS. Note that ðcþ45 ; c

�
45Þ-

MHS and ðcþ135; c
�
135Þ-MHS are functions of only one phase error (a,b). ðcþ45; c

�
45Þ-MHS and ðcþ135 ; c

�
135Þ-MHS, and dual MHS or HS give rise to ideal CAM data acquisition (MD = 1).
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schemes [Table 1] for CAM data acquisition [16] when phase errors
depend moderately (e.g., up to ±10�) on primary phase shifts or
sampling directionality. For future routine applications, it is of par-
ticular interest to assess the robustness of alternative canonical
CAM data acquisition schemes with respect to such variations of
phase errors, i.e., the degree to which dispersive peak components



Table 2
Analysis of 2D [13Caliphatic/13Caromatic, 1H]-HSQC spectra.

w = 45� (d = 0�) w = 135� (d = 0�) Dual

Peak I Peak II Peak III Peak I Peak II Peak III Peak I Peak II Peak III

(i) Mirrored hypercomplex sampling (MHS)a

Ĩ+a(�105) �4.27 ± 0.02 �1.48 ± 0.02 �1.58 ± 0.02 �4.29 ± 0.02 �1.5 ± 0.02 �1.62 ± 0.02 �8.53 ± 0.02 �2.96 ± 0.02 �3.22 ± 0.02
h+a 1.0 ± 0.5� 0.3 ± 1.5� �2.6 ± 1.3� 0.35 ± 0.5� 0.2 ± 1.5� 0.0 ± 1.3� 0.7 ± 0.4� 0.3 ± 1.0� �1.3 ± 1.0�
Ĩ�a(�105) 1.29 ± 0.02 0.41 ± 0.02 0.45 ± 0.02 �1.25 ± 0.02 �0.46 ± 0.02 �0.46 ± 0.02 0 0 0
h�a 0.5 ± 1.7� �1.9 ± 4.8� �10.5 ± 4.8� 0.5 ± 1.7� 5.8 ± 5.4� �7.5 ± 4.6� 0 0 0

Iþw ð�105Þ 4.49 ± 0.04 1.52 ± 0.04 1.54 ± 0.04 4.49 ± 0.04 1.61 ± 0.05 1.62 ± 0.04 NA NA NA

Uþw 17.7 ± 0.5� 16.0 ± 1.6� 13.8 ± 1.4� 16.5 ± 0.5� 16.8 ± 1.6� 16.1 ± 1.4� NA NA NA

I�w ð�105Þ 4.43 ± 0.04 1.55 ± 0.04 1.74 ± 0.04 4.45 ± 0.04 1.52 ± 0.05 1.74 ± 0.04 NA NA NA

U�w 16.0 ± 0.5� 15.2 ± 1.6� 17.1 ± 1.5� 16.0 ± 0.5� 17.4 ± 1.6� 15.1 ± 1.4� NA NA NA

(ii) Hypercomplex sampling (HS)a

Forward sampling Backward sampling Dual sampling
Peak I Peak II Peak III Peak I Peak II Peak III Peak I Peak II Peak III

Ĩ+a(�105) �2.93 ± 0.01 �0.97 ± 0.01 �1.07 ± 0.01 �2.85 ± 0.01 �1.0 ± 0.01 �1.08 ± 0.01 �5.71 ± 0.02 �1.96 ± 0.02 �2.13 ± 0.02
h+a �15.6 ± 0.5� �12.3 ± 1.5� �15.6 ± 1.4� 16.7 ± 0.5� 16.3 ± 1.5� 14.2 ± 1.4� 0.6 ± 0.4� 2.0 ± 1.1� �0.6 ± 1.0�
Ĩ�a(�105) 0 0 0 0 0 0 0 0 0
h�a 0 0 0 0 0 0 0 0 0
Iw(�105) 2.93 ± 0.01 0.97 ± 0.01 1.07 ± 0.01 2.85 ± 0.01 1.0 ± 0.01 1.08 ± 0.01 NA NA NA
Uw 15.6 ± 0.5� 12.3 ± 1.5� 15.6 ± 1.4� 16.7 ± 0.5� 16.3 ± 1.5� 14.2 ± 1.4� NA NA NA
Iw+d(�105) 2.93 ± 0.01 0.97 ± 0.01 1.07 ± 0.01 2.85 ± 0.01 1.0 ± 0.01 1.08 ± 0.01 NA NA NA
Uw+d 15.6 ± 0.5� 12.3 ± 1.5� 15.6 ± 1.4� 16.7 ± 0.5� 16.3 ± 1.5� 14.2 ± 1.4� NA NA NA

a See Section VII of the Supplementary Material for the estimation of errors.
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and quadrature image peaks are eliminated in spite of the
dependency.

Specifically, the impact of variations of secondary phase shifts
can be quantitatively compared using the FOMs MD for elimination
of the dispersive peak component located at frequency +a [Eq.
(13)] and MQ for elimination of the quadrature image peak located
at frequency �a [Eq. (14)]. Ideally, MD = MQ = 1 for CAM data acqui-
sition which implies their complete elimination. Here we discuss
separately the cases where an inequality of secondary phase shifts
[Eq. (1)] originates from a change of primary phase shift, or from a
change in sampling direction.

First, we address the case that the phase errors depend on the
primary phase shifts but are independent of the directionality of
time domain sampling. Comparison of MD [Fig. 4] shows that
(cþ45; c

�
45)-MHS is the preferred choice if the elimination of the dis-

persive component is of highest priority. For this scheme, elimina-
tion is complete (MD = 1) since the primary phase shift is the same
for the two interferograms used to construct the complex time do-
main signal, that is, data acquisition is insensitive to any variation
of the phase error with varying primary phase shift. When using
HS, dual sampling must be employed to achieve MD = 1. If the elim-
ination of the quadrature image peaks is of comparable impor-
tance, ðcþ0 ; c�90; c

þ
90; c

�
0 Þ-DMHS and DHS (Fig. 5f and i) are preferred.

Remarkably, MQ drops by only �1% for phase error differences be-
tween �10� and 10�, while a drop of �15% is registered for
ðcþ45; c

�
45; c

þ
135; c

�
135Þ-DMHS [Fig. 5c]. Thus, in applications where

quadrature image peaks are in the noise or appear in otherwise
empty spectral regions, (cþ45; c

�
45)-MHS and (cþ135; c

�
135)-MHS are rec-

ommended, while in applications where it is mandatory that quad-
rature image peaks are eliminated ðcþ0 ; c�90; c

þ
90; c

�
0 Þ-DMHS or DHS

should be employed.
Second, we address the case that the phase errors depend on the

directionality of time domain sampling but are independent of the
primary phase shifts. Comparison of the values of MD [Fig. S3 of the
Supplementary Material] reveals the same drop of �15% for phase
error differences between �10� and 10�. This is due to the fact that
all sampling schemes eliminate dispersive components by combin-
ing interferograms sampled in opposite directionality. Therefore,
any dependence of phase errors on the sampling direction neces-
sarily results in incomplete elimination of dispersive components.
If the elimination of the quadrature image peaks is of comparable
importance, HS is the preferred choice because no quadrature im-
age peaks are generated (MQ = 1) [see Fig. S4(g and h) of Supple-
mentary Material].

Clearly, the above presented preferences for sampling schemes
in case moderate variations of phase errors are encountered are
relevant only when the S/N ratios of the signals are large enough
to result in significant performance differences impacting spectral
analysis. In Section VII.3 of the Supplementary Material, standard
deviations of FOMs are calculated as a function of the S/N ratio,
demonstrating that for phase error differences in the range of
±10�, performance differences become significant already for S/N
ratios above �5. Hence, the selection of the best suited sampling
scheme is relevant even when data acquisition approaches the sen-
sitivity limited data collection regime [32].

In view of the potential application of the different sampling
schemes (Table 1), it is important to point at types of NMR exper-
iments in which phase errors cannot be avoided entirely by optimi-
zation of r.f. pulse sequence design. For example, even an idealized
description [1] of ‘in-phase’ magnetization transfer of total correla-
tion spectroscopy [1,3] (TOCSY) using ‘spin-modes’ shows [1] that
phase errors inevitably occur, and that they depend in a complex
manner on spin–spin scalar coupling topology and mixing time
[3]. Even though additional r.f. pulses (such as spin-lock purge
pulses [3]) can reduce phase errors, their (nearly) complete elimi-
nation is quite challenging. In particular, this feature makes TOCSY
sensitive to spectrometer imperfections so that a dependency of
phase errors on primary phase shifts and sampling directionality
often remains. Other types of spectroscopy which may well profit
from the new sampling schemes include solid state NMR [1], which
relies primarily on r.f. phase cycling to remove artifacts, spatially
resolved NMR [33], in which phase errors arise from the required
spatial selection, and pulse electron paramagnetic resonance
(EPR) spectroscopy, which also relies on quadrature detection in
the indirect dimension for multidimensional experiments (see,
for example, Chapter 5 in [34]).



Fig. 5. Plots of figures of merit for elimination of quadrature image peak. MQ was calculated using Eq. (14) when phase errors (‘secondary phase shifts’) depend on primary
phase shifts but not on the sampling directionality, that is, Uþw ¼ U�w ¼ Uw and Uþwþd ¼ U�wþd ¼ Uwþd : The FOM is calculated for a range of ±10�. (a) ðcþ45; c

�
45Þ-MHS, (b) ðcþ135; c

�
135Þ-

MHS, (c) ðcþ45 ; c
�
45 ; c

þ
135; c

�
135Þ-DMHS, (d) ðcþ0 ; c�90Þ-MHS, (e) ðcþ90; c

�
0 Þ-MHS, (f) ðcþ0 ; c�90; c

þ
90; c

�
0 Þ-DMHS, (g) forward HS, (h) backward HS, and (i) and DHS Note that ðcþ45; c

�
45Þ-MHS

and ðcþ135; c
�
135Þ-MHS are functions of only a single phase error (a, b).
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4. Conclusions

The high accuracy and reproducibility of r.f. pulse phase setting
and signal detection on modern NMR spectrometers ensures that
CAM data acquisition can be readily employed for NMR experi-
ments relying on through-bond polarization transfer, as long as
they are designed such that no dependency of phase errors on pri-
mary phase shifts or sampling directionality is present. For exper-
iments where this cannot be entirely accomplished, the
comparison of the robustness of different schemes with respect
to a moderate dependency of phase errors enables one to choose
the one best suited for CAM data acquisition. Importantly, gener-
ally applicable techniques are not available for processing data ac-
quired with HS [4] such that ‘pseudo-random’ phase errors are
eliminated. This is because phase errors not correlated with fre-
quency would require different ‘local’ phase corrections for each
signal, which is not feasible when signals overlap.

Using the previously described tensor product description to
employ HMS for multiple indirect dimensions [16], we show in
Sections IV and V of the Supplementary Material how the sampling
schemes considered here for generalized MHS [Eq. (2)] and HS [Eq.
(S2)] theory can be employed for several indirect chemical shift
evolution periods of a multidimensional NMR experiments, or for
any subset of jointly sampled chemical shift evolution periods of
a GFT or RD [32] projection NMR experiment. The tensor product
formation for C-vectors and D-matrices [see Eqs. (S40) and
(S63a) of the Supplementary Material] implies that the conclusions
drawn above for a single indirect dimension can be applied sepa-
rately to several shift evolution periods, thereby rendering routine
use straightforward also for spectra encoding higher dimensional
(>2D) spectral information. The same holds if different sampling
schemes are employed for different indirect evolution periods
(see Section VI of the Supplementary Material).

For such spectra, the optimization of r.f. pulse sequence design
and the choice of the best suited sampling scheme for CAM data
acquisition is thus preferably accomplished independently for each
indirect dimension. The same holds for GFT [17] and RD [32] pro-
jection NMR spectroscopy, where joint sampling of chemical shifts
implies that phase corrections cannot be applied to individual evo-
lution periods. Hence, it is advantageous to acquire, preferably for a
test compound giving rise to signals with high S/N ratios distrib-
uted over the spectral ranges of interest, 2D planes in which only
one of the several evolution periods is incremented in the indirect
dimension.

The generalized theory of MHS enables one to design new NMR
experiments in which the measurement of additional NMR param-
eters is encoded in secondary phase shifts or time domain ampli-
tude imbalances. As an example, one can envisage to implement
a 2D HNN(CO)CA experiment in which the polypeptide backbone
13Ca chemical shift of residue i is encoded in a secondary phase
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shift of the 15N shift evolution of the succeeding residue i + 1. This
can be accomplished by using the r.f. pulse sequence of a 3D
HNN(CO)CA experiment [3], and by setting the 13Ca shift evolution
to a fixed delay of, for example, 1/(2 	 spectral width). Employing
(cþ45; c

�
45)-MHS of 15N chemical shifts, the secondary phase shift en-

codes the 13Ca shift and will lead for each peak in the 2D [15N, 1H]
correlation spectrum to a corresponding quadrature image peak.
The intensity ratio of the two peaks then allows one to measure
the 13Ca shift relative to the r.f. pulse carrier position. Notably,
the employment of DHMS offers the attractive option to edit the
peaks and their quadrature images into different sub-spectra. This
enables one to record the spectra without doubling the spectral
width, thereby avoiding that off-resonance effects increase.

Overall, we expect that the generalized theory of HMS and HS
presented here may greatly impact future data acquisition proto-
cols for NMR spectroscopy, and possibly also for other areas where
phase-sensitive pure-absorption mode time domain sampling is
required.
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